Вопросы испарения влаги волнуют ученых очень давно. Первые исследования проводились еще в Древности, когда даже знаний было еще немного. Но уже тогда люди хотели знать все секреты, которые таит в себе вода. Разумеется, наибольшее количество исследований и полезных для жизни открытий было сделано за последние 200 лет. Несмотря на бурное развитие физики с семнадцатого века, водой мало кто занимался и единственное, что было сделано в те годы – очистка воды.
И даже тот факт, что горячая пища существовала тысячи лет, не волновал ученых. Ее воздействие на организм не сразу заинтересовало физиков. И все же первые шаги были сделаны в XVI веке. Изучали в то время, прежде всего, воздействие влаги и пара на человека. Ведь он был единственным в своем роде объектом, который можно было подвергать изучению. Прежде всего, сравнивали температуры, сравнивали особенности воздействия и сошлись на том, что пар может оказывать как благотворное, так и негативное влияние.
Достаточно слишком сильно нагреть пар, слишком долго поддерживать испарение – иными словами, все, что было бы «слишком» для кожи человека, приносило вред.
Пар для личных нужд
Поэтому в поиске новых открытий старались уточнить допустимые параметры пара. Более точные исследования стартовали намного позже, когда пар стал применяться в промышленности, когда развитие паровых машин преобразило мир. Стало необходимо точно рассчитать ту силу, которую пар несет в себе, которой может передвигать поршни и вращать колеса.
Классическая физика Ньютона в тот момент перестала быть полезной – она была создана для твердых тел, а влага не представляла собой такое. Даже если на поверхности тела находится немного жидкости, то уже в этом случае невозможно было бы рассчитать потенциальные взаимодействия тел.
Из-за испарения воды также происходили изменения во взаимодействиях тел. Охлаждение, деформация – все это было следствием выброса молекул жидкости из основного объема влаги. Интересно, насколько же сильно могло быть воздействие? Давайте представим обычный чайник. В него налито три литра воды. Чтобы полностью превратить три литра воды в пар на газовой плите, требуется не меньше полутора часов времени (здесь все зависит от формы чайника и мощности плиты).
В трех литрах воды содержится 10^26 молекул. Воздействие молекул, которые отрываются от жидкости, на саму жидкость, то это лишь тысячные доли. Именно по этой причине никто не может заметить воздействия. Кроме того, с идеально ровной поверхности любая молекула может оторваться под углом от 0 до 180 градусов, что в среднем (по теории вероятности) дает обратную силу, направленную строго вниз.
МКТ и немного жидкости
Конечно, все это несколько сложно для восприятия, ведь молекулярно-кинетическая теория была разработана уже в 19-м веке, когда физика дошла до составных частей элементарных веществ. Но все же, без этого никак нельзя понять, почему величина расстояния между молекулами, которые испаряются с поверхности воды, увеличивается. Причем увеличивается оно сразу же по нескольким причинам.
Первая причина очень простая и понятная всем и каждому: при переходе из одного агрегатного состояния в другое, молекулы раздвигаются вширь, промежутки между ними увеличиваются, а взаимодействие уменьшается. Вторая причина также не сложная: при нагревании молекулы двигаются быстрее, а потому они обретают большую энергию и получают за ее счет возможность оторваться от воздействия других молекул, расположенных поблизости. Если подумать, то ведь и переход в иное агрегатное состояние также возможен лишь при нагреве воды или иного вещества. Поэтому все сводится лишь к увеличению кинетической энергии.
При испарении воды с поверхности тела расстояние между ее молекулами увеличивается… всегда ли?
Давайте посмотрим, в чем это выражается. Вспомним простые задачки про мяч: накачали в теплом помещении, вынесли на холод – и он стал мягким. Дело в том, что молекулы постоянно находятся в движении. Нельзя обнаружить такого состояния (кроме абсолютного нуля, который к тому же недостижим), при котором молекулы не находились бы в движении. Поэтому среди состояний +100 и -50 есть разница лишь в скорости, с которой двигаются молекулы. Может показаться, что разница несущественна, но на самом деле при серьезном изменении температуры скорость движения вырастает во много раз.
Вспоминая зависимость давления газа на стенки сосуда от температуры, получаем, что при ее повышении на 100 градусов, давление увеличивается в десятки раз. Следовательно, во столько же раз увеличивается и скорость. Рассматривая с нормальным, большим и превышенным давлением, можно вспомнить взрыв котла, который наполнен излишне горячим паром, полуспущенные шины у автомобилей на морозе, а также множество других примеров. И если вода сама по себе оказывает некоторое влияние, то ее пар обычно куда сильнее давит на стенки сосуда.
Поскольку на поверхности тела и на поверхности воды влага есть почти всегда (даже при минимальной влажности и низкой температуре), то давление водяного пара наблюдается при любых земных условиях. Они очень разнообразны: Антарктида и Африка кажутся очень далекими друг от друга частями Земли, но на самом деле одинаковая влажность может наблюдаться в обеих точках.
Что касается влияния влажности и пара на тела, то здесь нужно учитывать десятки факторов: скорость движения, влажность воздуха, температуру внешней среды, вид среды, а также несколько прочих. От них зависит, к примеру, траектория полета пули, степень деформации тела и многое-многое другое.
Но даже когда между молекулами расстояние велико, существует сила связи. Из-за ее воздействия кинетическая энергия может вырастать или уменьшаться. Согласно закону всемирного тяготения, две молекулы притягиваются с силой, пропорциональной их массам и обратнопропорциональной квадрату расстояния между ними. То есть, сила уменьшается с увеличением расстояния, но полностью никогда не пропадает. Поэтому даже сильно разогретый пар никогда не распадается на отдельные молекулы, насколько высокой ни была бы температура.
Путь до частицы можно уменьшить, но здесь уже работает другая теория, теория идеального газа. Рассматривая ее приближенно, можно понять, что повышение температуры не всегда ведет к изменению плотности газа. Существует три основных параметра: температура, объем и давление. Чем выше температура, тем выше давление при неизменном объеме. Если давление увеличить, то при неизменном объеме температура вырастет – а вот изменения расстояния не будет. Удивительного ничего нет, потому что только что были рассмотрены классические изобарные процессы.
Физика и чайник
При работе с водой физика будет встречаться постоянно. Избавиться от ее законов нельзя ни при каком раскладе. Когда изучается движение волны или полет молекулы с поверхности какого-либо объекта, когда рассматривается движение жидкости в сосуде, везде используется МКТ – молекулярно-кинетическая теория. И если в школе физика была скучной, то даже для изучения обыденных вещей стоит применять некоторые интересные теории.
Кстати, поведение жидкости в сосуде очень подробно можно рассмотреть и на примере чайника. Когда происходит испарение или нагрев жидкости, отдельные области перемещаются. Некоторые молекулы во время испарения вырываются наружу, некоторые возвращаются обратно. Если происходит стопроцентное возвращение, система называется насыщенной. При нулевой влажности количество вернувшихся молекул стремится к нулю.
Вот так, когда происходит любой физический процесс, можно использовать математические и физические законы, чтобы точно рассчитать все до сотых. Но если хочется просто знать закономерности, которым подчиняется вода, то достаточно всего лишь прочитать наши статьи, раскрывающие не только природу жидкости, но и тайны, которые она хранит.